
Experience with the design of
a communication protocol for PC clusters

Jichao Zhang, Weimin Zheng, Di Chang, Huaxia Xia

Dept. of Computer Science and Technology. Tsinghua Univ.
Beijing 100084, P.R.China

zjc99@mails.tsinghua.edu.cn
zwm-dcs@tsinghua.edu.cn

Abstract. With the advent of high-speed LANs and rapid development of PC
technologies, the communication software evolution has lagged behind.
Traditional communication protocol stacks fail to deliver much of the
performance of physical network to user applications. So efficient
communication protocols are needed to take full advantage of the high
performance of underlying interconnection networks. This paper analyzes the
critical issues in designing an efficient communication protocol and introduces
our experience with the design and implementation of FMP (Fast Message
Passing). FMP is a reduced user-level message passing system designed for
Myrinet-based PC clusters. It provides high-speed, reliable and in-order
message delivery, and supports multiplexing and protective accessing of the
network interface. Moreover, standard parallel programming interface including
PVM/MPI on top of FMP are both implemented.

Keywords: PC cluster; message passing system; communication protocol;
FMP; Myrinet

1 Introduction

PC clusters based on high-speed interconnection networks offer a cost-effective
and scalable alternative to MPPs. Compared with MPPs, PC clusters exploit
standardized interconnection networks and communication protocols and have lower
cost, more available software and more accessibility [1]. The dramatic advance of the
performance of computing components and the advent of high-speed interconnection
networks such as Myrinet [2] provide PC clusters with the potential performance
comparable to that of MPPs. Communication software is crucial for cluster systems,
which affects the efficiency of parallel computing, the adaptability to the applications
and the scalability of the clusters. However, the advance in network hardware solely
is not sufficient to speed up the communication performance, and efficient
communication protocols are needed to deliver the high performance of network to
user applications. Traditional communication protocols such as TCP/IP fail to delieve
much of the network performance to the applications for their low efficiency, which
has been a bottleneck of clusters systems. It’s necessary to develop high performance
communication software to match the high-speed of lower level physical network and

User space

System space

Physical space

User applications

Socket API FMP API

TCP

IP

Data Link Level

Device Driver

Network Interface Card

MMAP

Fig. 1. Communication layers of TCP/IP and FMP

bridge the gap of the performance of user-level applications and that of lower level
network hardware.

Existing communication protocols are often based on low-speed and unreliable
network interconnections, and incorporate complex communication mechanism and
redundant functionalities. Moreover, the communication systems reside in the
operating system and so message passing processes involve system calls and context
switches. As a result, the communication systems are characterized by large
processing overhead, which prevents them from fully exploiting the performance of
the physical network. Detailed analysis shows that the main communication overhead
contributors are redundancy of messaging layers, excessive data copies, operating
system involvement and context switches, and error control [6][7]. In consideration of
the communication overhead contributors, the most promising technology to improve
the communication efficiency is to the implement the user-level communication.
User-level communication removes operating system involvement from the critical
communication path and provides direct user-level access to the network. However,
user-level communication protocol has to maintain multiplexing and protective
accessing of the network between competing processes without operating system
serving as the coordinator. This problem can be solved either by restricting network
accessing to one process or by implement mechanism which ensure multi-processor
multiplexing the network. In summary, an efficient communication protocol should
targeted the following aims:
● Provide high-speed, reliable, and in-order message delivery.
● Share the physical network among several processes.
● Providing protection between processes accessing the network simultaneously.
● Provide well-known and standardized programming interface.
Despite the great advance in the research of communication software, it still lags

behind the network interconnections in terms of performance. FMP is designed to
address these communication problems. FMP(Fase Message Passing) is a reduced
user-level communication protocol based on Myrinet network. It aims to fully utilize
the high performance network equipments and bridge the gap between the
performance of raw hardware and that of user applications. The communication layers

of TCP/IP stack and FMP are compared in Fig. 1. As is shown in the figure, TCP/IP
incorporates excessive messaging layers and redundant functionalities in layers,
which contributes to its low efficiency and hides the high performance of network
hardware from user applications. Compared with TCP/IP, FMP reduces messaging
layers, provides direct user-level access to the network interface, and avoids excessive
data copies. Moreover, FMP removes the operating system from the critical
communication path, reduces the overhead of operating system involvement in
messaging and context switches.

The remainder of this paper is organized as follows. Section 2 gives an overview of
FMP, including the LAN platform and software architecture of FMP. The details of
the implementation of FMP are discussed in Section 3. Section 4 illustrated the
performance results of FMP and MPI [3]/PVM [4] over FMP (MPI-FMP/PVM-MPI),
followed by the analysis of the results, and some other related research projects are
covered in this section. Finally, Section 5 presents our conclusions and the future
work.

2 Overview of FMP

2.1 The LAN platform – Myrinet based PC Cluster

FMP LAN platform is a PC cluster based on Myrinet network. Each PC is a SMP
with two Pentium III 550 MHz microprocessors running Windows NT, 128MB main
memory, and a Myrinet network interface card(NIC) on PCI Bus.

The PCs in the cluster are connected by Myrinet from Myrient Inc. Myrinet is a
high performance system area network (SAN), based on the technology used for
communication within concurrent and parallel supercomputers. It has a maximum
transfer rate of 1.28Gbits/s and an error rate of 10-15. Myrinet consists of three basic
components: a switch, an NIC per PC, and the cables connecting the cards to the
switches. The switch transmits variable-length packets using wormhole routing and
provides hardware flow control via back-pressure, in-order delivery. Each Myrinet
NIC contains a programmable network controller called LANai, three DMA engines,
and up to 1 MB of SRAM. The LANai processor runs the Myrinet Control
Program(MCP) storied in SRAM and controls the actions of three DMA engines. One
of the three DMA engines takes care of extracting incoming messages from the
network to the SRAM, another moves messages in the SRAM to the network, and the
third one moves data from NIC SRAM to host memory and vice-versa.

2.2 Software architecture

The description of the protocol stack is illustrated in Fig. 2.

Application

MPI-FMP PVM-FMP

Fast Message Passing (FMP)

Myrinet Shared Memory

Fig. 2. Discription of the protocol stack

FMP is a highly optimized, high performance, and reliable messaging layers for

Myrinet, which provides a virtual interface for the network. It presents a low-level
communication interface, which can be directly used by user applications and servers
as an intermediate layer for higher level communication protocols. FMP interface
consists of several basic send and receive communication functions, providing basic
communication functionalities and services. FMP is an asynchronous protocol which
doesn’t have to establish a connection between the communication processes before
communication. Messages are directly transmitted between processes with the
communication functions and each message has a process ID and a message ID as
message identifies. This standard communication model matches the low-level
communication protocol with high-level communication system, and makes it
convenient for the portability of high-level communication environment such as
MPI/PVM on top of FMP. We have implemented MPI-FMP/PVM-FMP to provide
more functionalities and ease of use for user applications.

3 Design and implementation issues of FMP

While reducing the messaging layers and avoiding system calls improve the
communication performance considerably, there are some other important issues
related to the functionality and performance of communication protocols: the
communication model, data movement by DMA vs Programmed I/O (PIO), message
pipelining, flow control and multiplexing and protection [5][6]. FMP addresses these
issues as follows.

3.1 Data movement by DMA vs PIO

During communication, messages must be transferred from the host memory to the
NI and vice-versa. On Myrinet, there are two strategies for effecting these transfers:
DMA or Programmed I/O (PIO). Data movements have a significant influence on the

Message Size
(b)

168 32 64 1k 8k 16k 128 256512 2k 4k

80

0
10
20
30
40
50
60
70

100
90

DMA
PIO

Fig. 3. Comparison of DMA and PIO modes

performance of communication protocols, so efficient data movements are essential
for obtaining high performance.

DMA operations free the host processor from communication, and so data
movement can proceed in parallel with host computation. It seems that DMA always
outperforms PIO. However, the setup cost of DMA operations maybe as much as that
of data movement itself, which makes it not suitable for short messages. In addition,
DMA operations deal with physical addresses while user applications deal with
virtual address, and so address mappings are needed for DMA operations. Data can be
copied to a buffer inside the operating system kernel or to a pinned-down buffer
before starting the DMA operation. Dynamically pinning user pages can eliminate
data copies, which implements the zero-copy data movement [9].

Compared with DMA, PIO directly moves data between host memory and NI
memory, and has much lower initialization overhead. But PIO requires expensive
operating system involvement
which should be eliminated from
the critical communication path. For
long messages movement, operating
system involvement incurs great
overhead. So PIO is not suitable for
long messages. A comparison of
DMA vs PIO is given in Fig. 3.

In consideration of these
different properties, we choose
different methods according to the
size of messages: PIO for short
messages (<512bytes) and DMA for
large ones (≥512bytes).

3.2 Credit-based Flow control mechanism

It’s critical for message passing systems to guarantee reliable data delivery.
However, data transfer may be unreliable due to unreliable network hardware or
buffer overflow(flow control) problems. Because all networks have finite buffers,
flow control is necessary to achieve reliable delivery, ensuring a receiver has enough
buffer space to store incoming messages. When the network hardware is extremely
reliable, as in the case of Myrinet which has an error rate of 10-15, the hardware proves
to be almost error-free. Based on Myrinet, FMP assumes the network to be reliable
and focuses solely on preventing buffer overflow problems.

FMP implements credit-based flow control mechanism, which ensures reliable data
transfer and eliminates the overhead of retransmissions. Each process allocates some
credits for each other process which will send messages to it. Every time a process
sends a message to the other process, it must have a credit. And if it runs out of the
credits, the sender has to wait until the corresponding receiver returns some credits.
When the receiver receives a certain number of messages, it returns the credits to the
sender which can be reused by the sender. For the receiver returns the credits to the

Bandwidth(MB/s)

sender by attaching the number of the credits in the messages, no much additional
retransmission overhead is incurred.

The incurred overhead of flow control in FMP is tested on our PC cluster. In terms
of communication latency, there is only about 2us overhead.

3.3 Message pipeling

For a complete message transfer, there can be four DMA operations: from host
memory to NI memory(host-to-NI) and from NI memory to network(NI-to-network)
at the sender side, from network to NI memory(network-to-NI) and from NI memory
to host memory(NI-to-host) at the receiver side. Generally, these DMA operations are
sequential and the receive operations have to wait for the finish of the send
operations. However, the NI can be programmed to start transmitting data to the
network while the host-to-NI DMA transfer is still in progress. In the similar way, the
NI-to-host data transfer can be initiated while the network-to-NI data transfer is in
progress at the receiver side. By overlapping the network-to-NI(NI-to-network) and
NI-to-host(host-to-NI) data transfers, the message transfer is fully pipelined like in the
wormhole routing. FMP employs pipelining mode to overlap message transfers,
which improves the communication performance impressively.

In the implementation of FMP, a whole message is segmented into several message
pieces. When a piece of message is ready to be sent on the sending side, the host or
NI sends the message piece by DMA, and on the receiving side, the NI or host can
receive the arrived message pieces by DMA before the finish of the whole message
send. Whole message transfers are also pipelined, which enables starting a new
message transfer before the finish of the previous message transfer.

3.4 Multiplexing and Protection

Since low-level messaging systems often give user applications direct access to the
network interface, one process may corrupt the other process’s memory in NI. Even
with a single process, it may modify the NI control program and crush the whole
system. So multiplexing of the NI and protective access to NI memory are necessary
for multi-user and multi-process environment.

FMP provides user applications with multiplexing of the NI and protective access
to NI memory. For inter-host process communication, several processes in the same
host may access the network interface simultaneously. FMP provides protective
access to the NI memory. Each process accessing the network is allocated a send
buffer and a receive buffer in NI memory for sending and receiving messages
respectively. Both buffers are queues, as is shown in Fig. 4. The send and receive
buffers of each process are established on initialization and the addresses of both
buffers are mapped to the user space. User applications can access the buffers
directly, which bypasses the operating system involvement. Since different processes
in the same host access separate NI memory areas, the send and receive operations are
paralleled and no processes race the NI memory. The Myrinet control program (MCP)
is running on LANai in the network interface card. It is responsible for transmitting

Network Interface Card (NIC)

Fig. 4. Message buffers in FMP

PnP2P1
R

ec
v

bu
ff

er

Se
nd

 b
uf

fe
r

……

Message Size (byte)

0

10

20

30

40

1 4 16 32 64 128 512 1024

La
te

nc
y(

us
)

Fig. 5. Latency of FMP

Message Size (byte)

0

20

40

60

80

100

B
an

dw
id

th
(M

B
/s

)

128 256 512 1024 2048 4096 8192

Fig. 6. Bandwidth of FMP

the data in send buffers out and putting the incoming messages in the appropriate
receive buffer.

The intro-host processes communication is based on the mechanism of shared

memory. During the process of system initialization, a block of shared memory is
statically allocated for the maxim processes and each process has a send queue and a
receive queue. Processes communicate with each other by directly accessing the
corresponding buffer queues through process ID.

4 Performance results and evaluation

The validity of our design and implementation of FMP and MPI-FMP/PVM-FMP
is evaluated by the communication performance in our PC cluster based on Myrinet.
The PCs are connected with a 1.28Gbits/s Myrinet switch. Each PC is a SMP with
two Pentium III 550 MHz running Windows NT, and a Myrinet network interface
card on PCI Bus.

We measure the inter-host point-to-point communication performance of FMP and
MPI-FMP/PVM-FMP, and compare it with that of TCP/IP. All the results of latency
and bandwidth are tested by applications directly using send and receive interface
functions. The latency tests are in the general roundtrip model and the bandwidth in
the stream model. The performance results are illustrated in the following figures.

0

10
20

40
50
60
70

30

Message Size (byte)

La
te

nc
y(

us
)

1 4 16 32 564 128 512 1024 2048 4096

Fig. 7. Latency of MPI-FMP

0

 20

40

60

80

100

Message Size (byte)

B
an

dw
id

th
(M

B
/s

)

64 128 256 512 1024 2048 4096 8192

Fig. 8. Bandwidth of MPI-FMP

La
te

nc
y(

us
)

0

40

80

120

160

200

Message Size (byte)

4096 20481 4 16 32 64 128 512 1024

Fig. 9. Latency of PVM-FMP

B
an

dw
id

th
(M

B
/s

)

0

10

20

30

40

50

Message Size (byte)

128 256 512 1024 2048 4096 8192

Fig. 10. Bandwidth of PVM-FMP

In our PC cluster platform, FMP achieves a minimum one-way latency of 9us and
a peak bandwidth of 83 MB/s. Based on FMP, MPI-FMP achieves a one-way latency
of 11us and a bandwidth of 64MB/s, and 45us and 48MB/s for PVM-FMP.

Over the past few years, many research projects have studied the design of high
performance communication software, including Active Messages(AM) [8], Fast
Messages(FM) [9][10], BIP [11], U-Net [12] and VMMC [13]. These communication
systems are all based on Myrinet, and they differ substantially in terms of design
consideration and performance. The comparison of the performance of Message
Passing Systems in terms of latency and bandwidth is illustrated in Table 1.

Table 1. Comparison of the performance of Message Passing Systems

As we can see from the table, the performance of FMP compares well with other
message passing system. Among the message passing systems, BIP stands out for its
high performance, which can be explained by its limited functionalities and leaving
other functionalities to the upper communication levels.

5 Conclusions and future work

High-speed networks are now providing incredible performance, while traditional
communication protocol stacks are not adequate for the high-speed communication
hardware. FMP is designed to exploit the performance potential of low-level network
equipment.

In this paper, we discuss the general design issues for low-level message passing
system and present the design and implementation of FMP. FMP is a high
performance message passing protocol for Cluster of PCs connected with Myrinet
network.. It achieves impressive communication performance which enables PC
clusters to work with high performance of MPP systems.

Based on high-speed and highly reliable communication hardware, FMP reduces
messaging layers, eliminates redundant and unnecessary functionalities of TCP/IP
stack. The performance results prove the validation of the design of FMP. Although

Mssage Passing
System

One-way
Latency(us)

Max.
Bandwidth

(MB/s)
Configuration

AM-II 21 31 167MHZ UltraSPARC,
SBUS

FM 2.1 11 77 200MHZ PPro, PCI

BIP 5 126 200MHZ PPro, PCI

U-Net 13 35 167MHZ UltraSPARC,
SBUS

VMMC-2 20 93 166MHZ Pentium, PCI

FMP 9 83 550MHZ Pentium, PCI

FMP is designed specially for Myrinet-based PC clusters, the design mechanism is
applicable to message passing systems for other network equipments.

Our future work will concern the optimization of higher level API (PVM/MPI) to
further reduce the gap between the performance of applications and that of FMP.
We’ll also make efforts to enrich the functionalities of FMP such as multicast support
to provide more communication services for the high-level user applications.

References

1. C.L. Dong, W.M. Zheng, et al., A scalable parallel workstation cluster system,
Proc. of APDC’97, Shang Hai, China, 1997.

2. Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles
L. Seitz, Jakov N. Seizovic, and Wen-King Su, Myrinet: a gigabit-per-second local
area network. IEEE Micro, February 1995.

3. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI: The Complete Reference. MIT Press, 1995

4. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Mancheck, and
Vaidy Sunderam. PVM:Parallel Virtual Machine. Scientific and Engineering
Computation. MIP Press, 1994.

5. R. Bhyoediang, T. Ruhl, H. E. Bal. Design Issues for User-Level Network
Interface Protocols on Myrinet. Technical Report IR-455, Vrije Universiteit,
Amsterdam, November 1998.

6. R. dos Santos, R. Bianchini, and C. L. Amorim. A Survey of Messaging Software
Issues and Systems for Myrinet-based Clusters. Parallel and Distributed
Computing Practices, special issue on High-Performance Computing on Clusters,
May 1999.

7. V. Karamcheti and A. Chien. Software Overhead in Messaging Layers: Where
Does the Time Go? In Proceedings of ASPLOS-VI, San Jose, California, October
5-7,1994.

8. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, Active Messages:
A Mechanism for Integrated Communication and Computation, Proc. of the 19th
ISCA, May 1992.

9. S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on Workstations:
Illinois Fast Messges (FM) for Myrinet. In Proceedings of Supercomputing ’95,
December 1995.

10. Mario Lauria, and Andrew Chien. MPI-FM: High Performance MPI on
Workstation Clusters, Journal of Parallel and Distributed Computing, Jan 1997.

11. L. Prylli and B.Tourancheau. BIP: A New Protocol Designed for High-
Performance Networking on Myrinet. In Proceedings of International Parallel
Processing Symposium ’98, March 1998

12. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. In Proc. 15th ACM SOSP, Copper
Mountain, CO, December 1995.

13. C. Dubnicki, A. Bilas, K. Li, and J. Philbin, Design and Implementation of Virtual
Memory-Mapped Communication on Myrinet, Proceedings of the 1997
International Parallel Processing Symposium, April 1997.

